Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Nota: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para o intervalo 2 eo intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução que vale a pena para algumas das questões de computação relacionadas com a implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nos seus resultados de teste em um curso onde você vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para a sua próxima pontuação de teste Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área dos 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para eles desenvolver uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre sua inteligência. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você conseguiu um 85 e um 73, então talvez você deva imaginar sobre como obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festas E werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Ambos estas estimativas são, na verdade, a média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são usados para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar do seguinte. Como calcular médias móveis ponderadas no Excel usando a suavização exponencial Análise de dados do Excel para Dummies, 2ª edição A ferramenta Suavização exponencial no Excel calcula A média móvel. No entanto, a suavização exponencial pondera os valores incluídos nos cálculos da média móvel de modo que os valores mais recentes tenham um maior efeito sobre o cálculo médio e os valores antigos tenham um efeito menor. Esta ponderação é realizada através de uma constante de alisamento. Para ilustrar como a ferramenta Exponential Smoothing funciona, suponha que você volte a olhar para a informação diária média de temperatura. Para calcular médias móveis ponderadas usando suavização exponencial, execute as seguintes etapas: Para calcular uma média móvel exponencialmente suavizada, clique primeiro no botão de comando Dados da análise de dados tab8217s. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item suavização exponencial da lista e, em seguida, clique em OK. O Excel exibe a caixa de diálogo Suavização exponencial. Identificar os dados. Para identificar os dados para os quais você deseja calcular uma média móvel exponencialmente suavizada, clique na caixa de texto Input Range. Em seguida, identifique o intervalo de entrada, digitando um endereço de intervalo de planilha ou selecionando o intervalo de planilha. Se o intervalo de entrada incluir uma etiqueta de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas. Fornecer a constante de alisamento. Insira o valor da constante de suavização na caixa de texto Fator de amortecimento. O arquivo de Ajuda do Excel sugere que você use uma constante de suavização de entre 0,2 e 0,3. Presumivelmente, no entanto, se você estiver usando esta ferramenta, você tem suas próprias idéias sobre o que é a constante de suavização correta. (Se você não tem idéia sobre a constante de suavização, talvez você não deveria usar essa ferramenta.) Diga ao Excel onde colocar os dados de média móvel suavemente exponencial. Use a caixa de texto Range de saída para identificar o intervalo de planilha no qual você deseja colocar os dados de média móvel. No exemplo da folha de cálculo, por exemplo, coloque os dados da média móvel no intervalo de folhas de cálculo B2: B10. (Opcional) Diagrama os dados exponencialmente suavizados. Para traçar os dados exponencialmente suavizados, marque a caixa de seleção Saída do gráfico. (Opcional) Indica que você deseja que as informações de erro padrão sejam calculadas. Para calcular erros padrão, marque a caixa de seleção Erros Padrão. O Excel coloca valores de erro padrão ao lado dos valores de média móvel exponencialmente suavizados. Depois de concluir especificando quais informações de média móvel você deseja calcular e onde deseja colocá-las, clique em OK. O Excel calcula as informações da média móvel.
No comments:
Post a Comment